发布时间: 2016-12-14
题目:如何更有效的建设可持续发展的道路路网
Title: Perspectives on Building a More Robust Pavement System
报告人: 牟峰 Ph.D. , 美国匹兹堡大学
报告时间:2016年12月16日星期五 10:30-12:00
地点:国家重点实验室学术报告厅(农水楼一楼)
报告人简介
牟峰博士,清华大学水利系学士,香港大学土木工程系硕士,美国匹兹堡大学土木与环境工程系博士。美国科学院交通委员会道路维护委员会委员,美国土木工程师协会会员,国际混凝土道路学会会员,多个国际知名学术杂志和大会评审人。目前担任美国CEMEX公司道路解决方案工程师,美国混凝土道路协会技术指导。主要研究方向为:复合材料界面破坏和疲劳力学、室内和现场试验、道路无损检测、道路结构模拟和优化、道路维护技术创新、路网经济学模型、以及道路设计规划软件的开发等研究。牟博士在过去五年参与数百万美元的美联邦和州立科研项目,发表近三十篇研究论文或报告。牟博士研发的超薄混凝土覆盖层技术,被最新的美国道路设计规范采纳为标准设计方法。他本人也多次受邀出席学术和行业会议做有关方面的报告和咨询。
报告简介 Building and maintaining a robust roadway network is crucial to the economic growth as well as national security of a state, yet it demands intensive investment of resource and capital. In the United States, the roadway condition is deteriorating rapidly, despite the huge spending on pavements. The key to building a more robust pavement system with ever shrinking governmental fund lies in advanced pavement research, which helps reveal the secret of how to invest smartly via advanced modelling, innovative design, intelligent construction, and optimized planning. This talk gives insights on three tropics of Dr. Mu's advanced pavement research. The first topic describes a novel approach proposed to investigate the interface facture of ultra-thin whitetopping under fatigue loading. Laboratory fracture tests in conjunction with cohesive-zone based numerical modelling were first performed to reveal the fracture mechanism at the interface of composite materials. An accelerated loading test was then carried out to quantify the fracture process of real-scale specimens under fatigue loading. An innovative non-destructive approach was also developed to more accurately detect the degree of interface fracture during the accelerated loading test. The second topic introduces the Mechanistic-Empirical pavement design methodology that is the basis of the new-generation AASHTO pavement design guide and its continual model development. The last topic focuses on the optimization of pavement network based on the Remaining Service Interval (RSI) concept and mix-of-fixes rehabilitation strategy.